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AEROSOL SAMPLE ACQUISITION
FOR CHEMICAL AND BIOLOGICAL AGENT DETECTION

1. Introduction

The objective of this project is to investigate means for
sampling aerosol particles from the ambient atmosphere for chemical
and biological detection. Sample acquisition for such purpose require
inncvative approaches involving sample extraction from the ambient
atmosphere, means for concentrating the aerosol particles from the
extracted sample into a smaller airstream, collecting the concentrated
particles onto a suitable substrate and then volatilizing and/or
pyrolyzing the collected sample for subsequent physical or chemical
analysis. While considerable knowledge is available on sample
extraction from the ambient atmosphere, less is known about sample
concentration and volatilization and pyrolyzing methods. The major
focus of this project is to perform theoretical and experimental study
of sample concentration and volatilization/pyrolysis methods with
the goal of developing sufficient understanding of the processes so
that complete sample concentration and volatilization/pyrolysis
systems can be developed to suit different needs.

The report is divided into several sections with sections 2 - 4
devoted to the theoretical and experimental study of virtual
impactor concentrators. Following a review of the theoretical
methods used for virtual impactor studies in Section 2, a  design
analysis of virtual impactor concentrator is made in Section 3. A
specific virtual impactor concentrator with a design flow rate of 22

liters per minute has been designed, constructed and tested and this



is described in detail in Section 4. Results of this study provides
information for virtual impactor concentrator design of nearly any
flowrate and particle cut size in the future. In Section 5, the
problems related to particle collection for volatilization and pyrolysis
are studied and analyzed. Several experimental volatilizer/pyrolyzer
concepts were analysis and compared. Finally, an experimental
volatilizer/ pyrolyzer was constructed and tested. On the basis of the
study, a new volatilizer/pyrolyzer was then proposed for possible
future development for various applications as described in Section

6.

2. T ical

One of the most powerful techniques to determine the details
of fluid flow fields and particle trajectories in an aerosol system is by
use of numerical methods to solve the equations governing the flow
fielu and the particle motion in that flow field. The governing
equations for the flow field are the Navier-Stokes equaticns, anci
those for the particle trajectories, the equations of motion of the
particles derived from the Newton's law relating the forces acting on
the particle and the particle inertia.

The first part of this technique (flow field analysis) has been
used by many investigators to determining the details of the flow
around objects or through confined spaces. However, we have used
both parts of the technique extensively to determine the particle
trajectories as well as the flow field, and in some cases have used the
technique to determine the particle concentration profile in an

aerosol system. The technique has been used in detailed studies of




particle motion in inertial impactors, filters, elutriators, clean rooms,
glove boxes, at inlets as well as in virtual impactors. In many of
these studies the theoretical results have been compared with
experimental results and agreement has been found to be excellent if
the boundary conditions used in the actual system closely

approximates those used in the theoretical analysis.

2.1 The virtual impactor

In a conventional impactor a jet of particle laden air is
accelerated through a nczzle and directed at a flat plate. Particles
larger than a certain critical size, the so-called cut size of the
impactor, would impact upon the plate while smaller particles would
follow the airstream and escape impaction. In a "virtual impactor” an
accelerating nozzle is used as in the conventional real impactor to
accelerate the airstream to a suitably high velocity, but the impaction
plate is replaced by a void space in the form of a receiving tube
through which a small fraction of the flow is allowed to pass. The
main flow is deflected by the receiving tube, but the large particles
are able to cross the streamlines and enter the receiving tube on
account of their inertia, while the small particles are carried by the
deflected airstream around the impactor. The output of the virtual
impactor are in the form of two airstreamns. The small stream (the
minor flow) contains the large particles inertially impacted into the
void space of the receiving tube, and the main airstream (the major
flow), the small particles contained in the original flow. In contrast
to the conventional real impactor where the large particles are

impacted on a solid surface, the virtual impactor has the large




particles impacted into a void space and these particles would thus
remain suspended or airborne.

The virtual impactor has two features which are desirable for
the continuous sampling and analysis of airborne particles. First,
both the large and small particles remain airborne and can be easily
transported to another instrument for collection (such as a real
impactor), to an instrument for analyses ( such as an optical counter
for coutinuous size distribuiion monitoring) or be removed from the
airstream by filtration. Second, the particles larger than the cut size
of the impactor are concentrated into the small fraction of the flow
passing through the receiving tube. This makes analysis easier and
more sensitive than if the particles were in the total flow entering
the impactor.

The major features of the flow in a virtual impactor is rather
simple. The air exits the nozzle and penetrates into the receiving
tube that is about 30% larger in diameter than the nozzle. The depth
(measured in number of receiving tube diameters) to which the air
penetrates into the receiving tube depends upon the Reynolds
number of the air passing through the nozzle. The Reynolds number
is based on the nozzle diameter and the average velocity of the air in
the nozzle. Most of the air reverses direction inside the receiving
tube and exits the receiving tube at its outer diameter. Particles
with large enough inertia cannot reverse direction and penetrate
farther into the receiving tube. Since a small fraction of the flow
entering the receiving tube is drawn through the tube, the large

particles are concentrated into this small flow.



Although the flow in the virtual impactor is rather simple in its
gross features, there is no analytical solution for the basic flow field
and particle trajectory equations. Therefore, the problem must be
solved numerically to determine the details of the flow field and

particle trajectories.

2.2 Numerical Techni for Flow Field Analysi

There are several numerical routines for Solving the Navier-
Stokes equations. One routine expresses the Navier-Stokes equations
and the continuity equation in terms of the the stream function and
the vorticity. These two quantities are then solved numerically at the
node points covering the computation domain. The velocity
components at the node points are then detrrmined from knowledge
of the value of the stream function at these points.  Other routines,
such as SIMPLE and SIMPLER, solves directly for the velocity
components and pressure at the node points. Both types of routines
should give the same answer since the same basic sets of equations
derived from the same basic Navier-Stokes equations are solved. In
either case, the values of the velocity components at the node points
is the final result. By using these velocity components, the particle
trajectories are then calculated in the same manner for both cases.

We have used both types of routines. However, because the
boundary conditions are slightly easier to define for the stream
function - vorticity routine, we have chosen it to be the routine for
analysis of the virtual impactor.

The general method of solution is to first express the Navier-

Stokes equations in terms of the vorticity and the stream function.
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The resulting differcntial equations are then changed to a finite
difference form and solved by the method of relaxation over a grid
of node points covering the field of interest. This method of analysis
follows closely the general solution procedure described by GOSMAN,
et al. (1969).

In the method devised by GOSMAN, et al. (1969) it is not
necessary to have equally spaced grid lines. Therefore, more node
points can be placed in areas where the velocity gradients are the
largest. It is also assumed that the density and viscosity are constant
and that there ° o swirl so that there is no 6 component of velocity.

Considering these assumptions the Navier-Stokes equations are:

r direction:

CRALRVALYE. Sal LR R
PAY 7o +V zaz tH roor T2 +—a;2_) (1)
z direction:
CAAJ ) (a vV, 18V, 3V, 2)
p\V rot VZ_B_'_ z-To+u *T ap TT (2)

and the continuity equation is:
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The continuity equation is satisfied by

defined as follows:

Lo Loy
V= ror’

. Loy

I"r' oz
The vorticity, ', is defined as:

SV, avy
©="T"- "o

or' = az'

the stream function, vy',

(4)

(3)

The above five equations are combined into two differential

equations which fully describe the flow fieid in terms of «'/r' and the

stream function.

These equations are made dimensionless, as

denoted by dropping the primes, by means of the jet diameter, W,

and the average air velocity at this diameter, Vo. The dimensionless

terms are:

and

(6)

(7)

(8)
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The Navier-Stokes equations (equations 1 and 2), continuity
equation (equation 3) and the definition of the stream function
(equation 4) and the vorticity (equation S) have been combined into
two differential equations which fully describe the flow field in
terms of w/r and the stream function. These two equations are

made dimensionless by means of equations (6) to (9) and the results

are:
ga_\g) a(w a_\g) a(r3ao)/r) a(x 3aco/r
T aZ T al' l_ { or } 10
ar Bz “Re or az (10)
and
Q 1oyy 9 19y
- (r ar) r3.) (11)

Equations (10) and (11) are integrated over a finite area
around a typical node point and two finite difference equations are
obtained. The typical node point is denoted by the subscript P and
the surrounding node points by E, W, N, §, SE, NE, SW and NW.
Figure 1 shows the orientation of these node points with respect to

the r and z directions.
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The convective terms (the 2 terms on the left-hand side of
equation (10) are integrated using the upwind difference method.

The result of integrating equation (10) and solving for w/r at S

point P is:
(m/r)E(AE + RBE) + (C_D_/r)w(AW + RBW) + ((t_)/r)N(AN +
(?)p = rp(RBN) + (w/r)g AS + 1, (RBS)
AE + AW + AN + AS + RBE + RBW +r2p(RBN+RBS)
(12)
where:

AE = ((yS + ySE - yN - yNE) + lyS + ySE - yN - yNE [} DV

AW= {(yN + yNW - yS - ySW) + hyN + yNW - yS - ySW [} DV
AN = {(yE + yNE - yW - yNW) + yN + yNW - yS - ySW|} DV
AS = {(yW +ySW - yE - ySE) + hyW + ySW - yE - ySE|) DV

(13)

- Tp
T 2rg - rw)(zN-2§)

DV
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1 1
» (FE -7y (g -rw) E*TP

)3

1 : L (rw + )3
4 Retp (rp -tyy) (fg -twy) "W 7P

(14)
1 1 1 ,
RBN:zRe (zN - zp) (zN - 28)

1 1 1
RBS=2Re (zp -zg) ZN - ZS)

The result of integrating equation (11) and solving for the

stream function at point P is:

1 1
VE BE + yyw BW+\|;N BNrD—2+\yS BSrD—2+(m/r)P

Vp = 1 .
BE + BW +—2(BN + BS)
p
(15)
where:
1 1 1 1
BE"‘rp (rg - 1p) (rg - rw) (rg + 1p)
1 1 1 1
BW-4rp (1'p -rw ) (rg - rw) (rp +1wW)
(16)
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iyl 1
(2N - zp) (zN - z§)

BN

P 1
~“(zp - zg) (2N - 28)

BS

Equations (12) and (15) are the equations used in calculating
o/t and y at each node point. | ‘ |

Iteration equations are also required for grid points on the
boundary. These equations for the boundary node points are
somewhat different than for the interior nodes. For each of these
boundary nodes there is a condition for the stream function and the
vorticity.

First, the stream functions along the surface defining the nozzle
is held constant and made equal to zero. Also, along the centerline

the stream function is held constant at Ymax’ where Ymax = 1/8.

Finally, the stream function at the receiving tubes wall is constant
and equal to the percentage of v ax that is equal to the fraction of

the flow in the major flow.

At the entrance Vz is assumed to be constant so that:

2
r w
- . 2 (17)
max 2 ( Dentrancc)

The boundary condition at all exits assume the streamlines are

straight or:

VIN = VINM (18)
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Where subscript IN denotes boundary nodes and INM denotes the
adjacent interior node.

The vorticity boundary conditions along a solid surface can be
deduced from the fact that the velocities along the wall and
perpendicular to the wall are set equal to zero and the gradients
perpendicular to the wall are assumed to be much larger than those
along the wall. Therefore, for surfaces of constant z, equation (10)

becomes:

92 (w/r)
2 =0 (19)

and the equation (11) becomes:

@_ 13
T 12 522 (20)
leading to the boundary condition:
w 3 (ynp-¥p) (e/fNp
(_) =-- ( 2 - ) (21)
r'p rp (zp - ZNP)

where the subscript P denotes any node on the surface and the
subscript NP denotes the adjacent interior node.

For surface where r=constant, equation (10) becomes:

e T T R e T T T R e e e L S R B T T R e Ty T e e s R S e R i e S e e e S i s S T R P e A N BT R =




14
Q
d r
- (+3 =) _ .
or (r ar) =0 (22)
equation (11) becomes:
o 12 (Ldy S
r  r oar (r ar) (23)
and the boundary condition becomes:
4
(Q)P =(yNp - VP + (Q)Np rP3 Tl'g [4rgp In (rN P) - rNP’:), +
r r (rp -INP) e Ip
3 r rnpd
Tl 2By NB_ o1 Lo 2. 20
P (rp - INp) i6 L4rnp? n (pp p2 P ] -5 @p? - rypd)
(24)

Where the subscripts P denote grid points on a surface and NP
denotes the adjacent interior grid point.

Along the conical entrance surface neither equation (20) nor
(21) applies, since the wall is at an angle to the grid lines. However,
since the cone surface is at an angle of 30° to the centerline, equation
(21) is used instead of equation (20). Although this is an
approximation, the conical entrance is the farthest surface from the
receiving tube and is not expected to affect the flow in the inertial
separation region. Therefore, equation (21) is used along the conical

wall with the subscript P denoting a boundary node point. The

A
i '
Bl
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subscript NP denotes the adjacent interior node point on a grid line
parallel to the entrance and passing through the point P.

Even though the vorticity values along the conical surface can
now be solved, there is still one more problem presented by this
surface. This problem arises when the vorticity is calculated at the
node points directly adjacent to the cone. If the expressions for AE
and AN of equation (13) are examined it will be seen that the stream
function at point NE must be known. We are assuming in Figure 1
that the conical surface is passing through points E and N and point
NE, which in (I+1, J+1), will lie outside of the calculation domain.
Therefore, the expression for AE and AN must be revised when the
vorticity at nodes in this position are calculated.

The revision of AE and AN can best be performed by noting
that AE and AN are actually

AE = {(yg, -Vpe) + e -v I} DV

and (25)

The subscripts refer to the corners of the dotted rectangle of Figure
1.
It can be seen in Figure 1 that the point denoted by subscript

ne lies on the surface of the cone. Since the boundary condition for
the stream function on the conical surface is y=0, Vje=0 in equations
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(25). If the other terms are expressed as an average of their four

surrounding node points, equation (25) becomes:

AE = ((yvg+VgE +VE +Vp) + g +Vgg +wr +vpl) DV
(26)

AN = {(-yNy -¥YNW "YW - Vp) + I‘WN YNwW VYw " Vp l} DV

These equations must be used in place of AE and AN in equations
(13) when the vorticity is calculated at the node points one step from
the conical surface.

At the entrance, the flow is assumed uniform and parallel to

the impacwor axis. Therefore, w/r = 0. At the exit it is assumed:
@ @ .
D= M - @n

On the centerline both ®w and r are equal to zero. Hence w/r
becomes indeterminate. However, near the centerline w/r is an even

function or r so that:
w/r = A + Brl (28)

At the centerline r = 0 so (w/r); = A, where the subscript 1 denotes a

centerline node.
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The values of A can be determined by evaluating equation (28)
at the two grid lines adjacent to the centerline. At the nearest grid

line

(w/f)y = A +Bry2 (29)

and at the next grid line
(w/r)3 = A +Br32 (30)

Since the grid lines near the centerline are equally spaced, r) =

Ar and r3 = 2Ar where Ar is the grid spacing, A can thus be solved as:

4(w/1r)y - (/1)
A=), = 2 (31)

Which is the iteration equation used on the centerline.

After the stream function has been determined at each of the
node points, the velocity component in both the r and z directions
can be calculated.

The x-component of velocity can be determined from the

definition of stream function:

vr = LY

=1 oz (32)

Since the grid lines are not equally spaced, node P is not equally

distant from nodes S and N as can be seen in Figure 1. Therefore,

[
il

“‘.
cacadlRly o

PRUR DN}
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equation (32) is weighted more in favor of the closer grid point as

follows:

1 9y zg dyy ,zN - zP
Ve = 7 (5n (zN _,S) - 5)s G2 (33)

If the partial derivatives are put in finite difference form, equation

(33) becomes:

Vv

(Vny - ¥p) (zp -2g) (Wp-V¥g) (zN - zp)
r_l_NPPs PSNP(34)

r= 1, (2N -zp) (2N -28) " (zp - 28) (2N - 2§)

The z-component of velocity is derived in exactly the same manner

from the equation:

_ 12y
Vz_—r 2r (35)

to give:

V. = 1 (VE - vp) (rw - 1p) . (¥p -¥w) (rp - 1E)
z-rp (rg - rp) (rg - W) (rp - rw ) (rg - W)

(36)
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The value of V; at the centerline cannot be determined from

equation (36) since rp = O for this case. At the centerline it can be

assumed that the stream function is an even function of r
y=ar? +b (37)

where a and b are constants. It can be seen that b = Vp and a =

VNP " VP
INPZ

and NP denotes the adjacent interior node.

Again the subscript P denotes a node on the centerline

The definition of the stream function can now be used to derive

an expression for V,.

)

<

1
V,=- T ar (38)
Substitute equation (37) into (38) and we obtain
V,=-2a
or
2(ynp - Vp)
z*= INp2 (39)

Which is used in calculating V, on the centerline.

23 N ical Techni for Particle Trai Calculati

Once ‘the flow field has been determined as explained in the

previous section, the particle trajectories can be calculated. The
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starting point for the particle trajectory calculations is the values of
the velocity components in the r and z directions at each node point.
Recall that these velocity components were the final result of the
flow field calculation.

The governing equation for the particle trajectory is the

Newton's law governing the particle motion:
F= ma (40)

where F is the aerodynamic force on the particle, m is the mass of
the particle and a is the acceleration of the particle. By assuming
Stokes' law of resistance, the equations of motion of a particle in the

r and z directions are:

d2r' 3muD ., dr'
T CJJ (V I')

Mag2 = rodr

and

d2z' 3nuDp . . dz'\
m2="C (v'z- 37 (41)

These equations can be made dimensionless by using:

_I _z
=w 2w

vV, v,

yr _ Yz ,
Vr-vo VZ- 5 ( ')
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— t'
=WV,
The equations now become:
Stk d?r _, dr
2 dt T ' Tdt
o (43)
Stk d%z _ v, .42
2 dt t
where
poCV,D2p

The square root of the Stokes number, V'Stk, is used as a
dimensionless pariicle size.

It should be noted that equations (43) are interrelated since
both fluid velocity components, V, and V, are dependent on the
position of the particle, (r,z). Therefore, these two equations must be
integrated simultaneously.

Several numerical methods are available for carrying out this
integration. The method we have chosen is the Runge-Kutta fourth
order method, since it is self starting and gives good accuracy.

In general the method for determining the particle trajectory is

as follows:




1. A particle of know Stokes number is assigned to start at some
point at the virtual impactor inlet with a velocity equal to that
of the fluid at that pcint. T
2. Linear interpolation formulas are derived for the velocity
components V. and V, based on the values of the velocity
~components at the four node points situated at the corners of
the elemental area in which the particle is located.

3.  An estimate is made of the particle crossing time, i.e. the time
taken by the particle to cross this elemental area.

4. Equations (43) are integrated numerically to determine a new
particle position using the Runge-Kutta method with a time
increment equal to 1/10th of the estimated particle crossing
time.

A check is made to see if this new position of the particle is still
within the same elemental area. If the particle is still in the
same area, step 4 is repeated with the same time increment
until a grid line is crossed.

6. Wiien a grid line is crossed the process is started again at step
2 ior this new elemental area. This is continued until the
particle reaches the exit of either the major or minor flows or
strikes a surface.

By starting particles of different sizes (Stokes Numbers) at
different points along the inlet, it is possible to construct efficiency
curves for particles passing through the receiving tube with the
minor flow and out the side exit with the major flow. In addition, it

is possible to determine the percentage of particles of any size that
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hit a surface. These are considered to be particle losses in the

impactor.

2.4 Applicati ¢ Fl Field { Particle Trai Soluti

Techni Virtual I

The best application of the flow field and particle trajectory
solution techniques to aerosol transport problems is on a case by case
basis so the exact boundary conditions can be modeled. However,
since virtual impactors are rather simple instruments with air
flowing from nozzles into a receiving tubes, it is possible to do a
parametric study of virtual impactors and apply the results from the
case that is the closest to that of interest. This was done by Marple
and Chien (1980) and the resulting efficiency curves from their
study reproduced in figures 2 and 3. Figure 2 shows the basic
configuration and defines the parameters while Figure 3 shows the
efficiency curves. For cases which are different from those given in
these figures, such as different geometries or flow rates, the
technique should be applied with the correct boundary conditions.

The efficiency curve shown in Figure 3 are for the percentage
of particles passing through the nozzle and penetrating into the
receiving tube. These are the large particle collection efficiency
curves. In each set of efficiency curves, one parameter has been
varied. Therefore, it was possible to study the effects ¢ varying
parameters such as the angle of the inlet, the distance between the
receiving tube inlet and the nozzle exit, the Reynolds Number, the
configuration of the inlet to the receiving tube and other

relationships between the diameters of the receiving tube to that of
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the nozzle. One striking feature of these efficiency curves is that all
parameters except the minor to total flow ratio parameter have only
a minor influence on the position or the shape of the efficiency curve.
The reason for this is that the flow from the nozzle penetrates into
the receiving tube and all of the separation is accomplished within
the receiving tube. Other parameters, such as the distance between
the receiving tube inlet and nozzle exit, the angle of the inlet, the
nozzle Reynolds Number, shape of the receiving tube, all have little
influence on the collection characteristics.

The one parameter that has a significant influence on the
efficiency curve is the ratio of minor to total flow. As the minor flow
is decreased, the efficiency curve shifts to the larger sizes of STK
indicating a larger cutoff size. In addition, the cutoff characteristics

of the efficiency curves become sharper. Also note that the

- 4 & & O S ah e =

efficiency curves asymptotically approach the value corresponding to
the percentage of flow passing through the receiving tube for the
smaller particle sizes. Therefore, it is desirable to have as small a
minor flow as possible to obtain a sharp cutoff characteristic.

In the above described calculation results, it is assumed that
particles impacting on the receiving tube walls will stick to the walls.
Since this may not occur in actual practice when solid particles are
involved, there is some uncertainty in the use of these theoretical
results for actual impactor designs. For these and other reasons,
impactors designed on the basis of theoretical calculations must be

calibrated and studied experimentally.
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3. Desi Crpsiderati

The starting point in the design of virtual impactor
concentrators is the Stokes number, defined as the ratio of the
particle stopping distance to the radius of the nozzle,

Stk =

<t U
3 (45)

where Stk is the Stokes number, t is the particle relaxation time and

U is the mean jet velocity in the nozzle. The particle relaxation time,
1, is a function of the particle diameter, Dp, and particle density, Pp:

D.2
“p“Pp (46)

= 18 u C
where C is the particle slip correction given by

C=1+ 1246 Kn + 0.42 Kne - 0.87/Kn (47)

and Kn is the Knudsen number defined by

Kn=7— (48)

To design a virtual impactor concentrator, the functional relationship
between the efficiency of the concentrator and the Stokes must be

known. Theoretical and experimental studies of the virtual impactor
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described above have shown that the collection efficiency, n, is

primarily a function of the Stokes number, St,
n = f(Stk) (49)

with the other parameters, such as the jet to receiving tube distance,
jet Reynolds number, the nozzle to receiving-tube diameter ratio, the
major and minor flow ratios, etc. playing a secondary, though
sometimes important, role. Thereforz, the design of virtual impactor
concentrator can begin by first as ming a constant Stokes number
at the desired impactor cut-point and then calculating the
corresponding nozzle diameters and required jet velocities to achieve
the desired cut point point. The results can then be verified by
constructing an experimental impactor and performing the necessary
calibration and verification studies. The design procedure is

described in more detail below.

3.1 Single Nozzle Virtual Impactor

In the case of the single nozzle impactor, the design is straight
forward. Let q be the volumetric flow through the nozzle. q is related

to the mean jet velocity, U, as follows,
q=nR2U (50)

By means of Equations (45) and (50) we have

i 2= = RSt e Y i
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3 1/3
R=(_7) Y (51)

for the nozzle radius. Knowing the nozzle radius, the required jet
velocity, U, can then be calculated by means of Equation (50). To
determine the pressure drop, AP, across the nozzle, we make use of

the Bernoulli's law and the definition of the nozzle discharge

coefficient, Cqg,

2AP
U‘-‘Cd'\/'p— (52)

from which we obtain

2
_pUs
AP = 2 Cq2 (53)

The power required to maintain an air flow at the rate of q through a

nozzle at a pressure drop of AP is

which is the theoretical air power for operating the virtual impactor

concentrator. The actual input power, P, to the blower or pump is

higher by a factor equal to the blow or pump efficiency, ny,

Pth
P=—7"" 55
T (55)
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Figure 4 shows the calculated nozzle diameter, jet velocity, pressure
drop and the theoretical air power for a single nozzle virtual
impactor concentrator designed for a cut-point diameter of 2.0 um.
The calculation has been made by assuming VSt = 0.65 and a nozzle
discharge coefficient of 0.8. Other values can be used for the
calculation, but the results will not differ substantially from those
obtained.

It is interesting to note that the nozzle diameter, the jet
velocity, the pressure drop and the theoretical air power all increase
substantially with increasing flow rate. For a 1 liters per minute
(lpm) sampling flow rate a nozzle of 1.11 mm in diameter is
required. The required nozzle diameter increases to 1.11 cm at a flow
rate of 1000 Ipm. The corresponding jet velocity increases from
1,740 c¢cm/s to 17,400 cm/s, and the pressure drop from 1.14 to 114
inch H20. The theoretical air power incr ases from 4.71 mW to 471
W. More detailed data on the design calculations are given in

Appendix. A.

3.2 Multiple-nozzle Virtual Impactor Concentrator

Because of the high pressure drop and power requirement of
the single nozzle virtual impactor concentrator, practical impactors
with moderate to high flow rate requirements generally must be
designed with multiple nozzles. For a multiple nozzle impactor

consisting of n identical nozzles operating in parallel, the flow rate

through each nozzle is



Iolenuadsuos 1o1dedwtl fenura
e 10) e1 mopy uo samod sre pue ‘Anoojaa 13f  ‘doip aimssard ‘iavwelp 9jzzou Jo dudpuadaq p 231

31

(wdy ) 6 ‘a3ey Moy

0001 .
0] - 0 - 00
o8 |- 000¢ - zo
- u -
o 2,
oot |- Mw. 0009 @ — 0 m
= & N
< E )
) S o o
(-] [~ o w)
: 3 5
N 0¥~ G 0006 g - 90
i | 2 | 8
‘ o o m -4 M“
[ nd m 0 )
(ad ~ & o
~— [ ]
0zE | ~— 000Z1 m -4 so 8
o St
L -
0 Al o 000S1 L... A109RA 190 4001 —~ 01
B ‘arerq 3zzoN T
o8y — gw-..t A N Ras o soa_a & A Las s s s 2 N (07A - 71

I0jerjudouo) yojoedwy reniny Ipzzo)N WS




i
1
I
!
|
!
}
|
i
i
!
!
1
i
!
1
1
i
)

32
Q=7 (56)

where Q is total flow rate through the multiple nozzle impactor. by
substituting Eq. (56) into Equations (51) and making use of Equations
(51) - (54), we have the following equations for the design of

multiple nozzle impactor

_,_ Q< 1/3
R=( nn St) / (37)
2AP
U=Cd'\/— (58)
p
Pth=QAP (60)

Figures 5 - 8 show the calculated impactor characteristics for a
virtual impactor concentrator operating with a flow rate of 10, 100,
1000 and 22 lpm and a cut point diameter of 2.0 um. In this
calculation, the number of nozzles has been varied from 1 to 100.
The advantage of the multiple nozzle approach is thus obvious. For
instance, for a virtual impactor concentrator with a sampling flow

rate of 22 lpm, a single nozzle design will result in a concentrator

having a pressure drop of 8.92 inch H20. With 100 nozzles, the

pressure drop is reduced to 0.414 inch H70. The decrease in the

theoretical air power is quite dramatic. A single nozzle impactor
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requires a power of 814 mW, while a 100 nozzle impactor requires
only 37.8 mW of theoretical air power. More detailed data on the

design calculations are given in Appendix B.

4.  Desi | Evaluation of 22 Li p Mi Vi |

On the basis of the above design considerations, a virtuul
impactor having a sampling flow rate of 22 liters per minute was
designed, constructed and tested. The concentrator consists of 22
nozzles each operating at a flow rate of 1 liter per minute. The

specifications of the design are as follows:

0.048"
22 Ipm

Nozzle diameter

Total flow rate
Major flow rate = 21 lpm
Minor flow rate = 1.0 lpm

Number of nozzles= 22

A design drawing for the concentrator is shown in Figure 9. Detailed

design of the various parts of the system is given in Appendix C.

4.1 Experimental Evaluation and Results

For the purpose of the laboratory evaluation of the virtual
impactor concentrator, an inlet adapter piece is constructed so that
the test aerosol can be introduced into the concentrator through this
adapter piece. Figure 10 shows the concentrator with this inlet

adapter piece used during the test in place of the regular inlet.
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The actual calibration was made using liquid oleic-acid
particles generated with a Berglund-Liu vibrating orifice
monodisperse aerosol generator (Berglund and Liu, 1973) to
determine its particle collection efficiency and loss characteristics.
Fluorescent uranine-tagged oil drops of a specific particle size. were
generated by the Berglund-Liu generator, and were collected using
the large particle and small particle collection filters shown in Figure
11. Particle loss inside the minor flow chamber was also determined
by wiping the internal surfaces with a wet cotton swap and
measuring the fluorescence. The experimental results are shown in
Figure 12.

Results of these experiments show that the virtual impactor
concentrator has excellent particle concentrating performance
characteristics. The 50% aerodynamic was found to be 3.1 um and the
internal particle loss in the minor flow chamber was quite small,
ranging from 0.5% for a particle diameter of 2.53 um, to a maximum
of 12.8% at the particle diameter of 7.31 um.

The pressure drop through the concentrator was checked at
various flow rates and at the locations shown in Figure 13 using an
inclined water manometer. The results are shown in Figure 14. For

the operating conditions of 21 Ipm major flow and 1 1pm minor flow,

the pressure drops are 0.9 and 0.03 in. Hy0 respectively.

4.2 Conclusions
The experimental virtual impactor concentrator was found to
perform satisfactorily with high collection efficiency, low particle loss

and low pressure drop. The experimentally determined cut-point

il

Il
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Nozzle Plate

Minor-Flow Chamber

Major-Flow Chamber

l Large-Particle Filter
Oy

Small-Particle Filter

Figure 11. Virtual impactor concentrator with large particle and
small particle collection filtes during test to determine
collection efficiency and p2-ti le loss
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Figure 12. Collection efficiency and particle loss characteristics of
virtual impactor concentrator
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Pressurc drop checked here

Figure 13. Virtual impactor collector during pressure drop tests,

showing locations where pressure was measured
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Figure 14. Pressure drop vs. flow characteristics of virtual impactor
concentrator
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diameter at 3.1 um of the concentrator was larger than intended.
However, the cut-point diameter can be decreased by increasing the
jet velocity. To achieve a cutpoint diameter of 2.0 um it is necessary
to increase the jet velocity by a factor equal to the ratio of the
relaxation time of the 3.1 um diameter particle to that of the 2.0 um
diameter. The ratio is found to be 2.34. By increasing the total
flowrate of the concentrator from 22 lpm to 515 lpm, the desired
cutpoint can be achieved. At this flow rate, the pressure drop
throngh the impactor would be 4.0 in. Hy0, based on the flow vs.
pressure drop measurement. No other change in the design of the

concentrator would be necessary.

5. Vaporizer/Pyrolyzer

The purpose of the vaporizer/pyrolyzer is to collect airborne
particles from the concentrated aerosol stream from the virtual
impactor concentrator onto a suitable substrate and then vaporize or
pyrolyze the collected particles for subsequent physical or chemical
analysis. Specific chemical detection techniques that can be used
include mass-spectroscopic or gas chromatographic techniques.
However, this project deals with the vaporizer/pyrolyzer designs
only. The specific chemical analysis techniques to be used are not

investigated.

5.1 Preliminary Experiments

Preliminary experiments were performed by means of a foil

vaporizer/pyrolyzer made ot nichrome foil. The physical
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characteristics of the nichrome foil used in the experiments were as

follows:
Resistivity: 108 uQ/cm3
Composition: Chromium 20%
Iron 0.5% .
- Silicon - 1.0%
Nickel 78.5%
Dimensions:

0.25" x 1.0" x 0.001" (Width x length x thickness)

The material was obtained from Hoskins Manufacturing Co. (4445
Lawton Ave., Detroit, Michigan 48208) and the foil was mounted on
supporting electrodes. The completed unit was found to have an
electrical resistance of 0.345 Q.

The electrical and thermal characteristics of the foil
vaporizer/pyrolyzer was determined by connecting a low voltage DC
power supply to the evaporator and measuring the electrical current
and the temperature of the foil as the voltage is varied. The power
supply used has a voltage range of 0 - 36 Volts and current range of
0-10 Amperes. The foil temperature was measured by welding a
thermocouple to the surface of the foil and measuring the
thermocouple output directly with a temperature indicator. The
experimental data are summarized in Table 1 and the results are
plotted in Figures 15 and 16 for the voltage vs. current and power
vs, temperature relationships. It is interesting to note that the foil is
able to achieve a temperature of 700 °C with an input power of 28

Watts.
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Table 1: Electrical and Thermal Characteristics of Foil

Vaporizer/Pyrolyzer
I, Ampere V, Volt W, Watt T, oC
0.0 0.00 0.00 25
1.0 0.34 034 50
2.0 0.69 1.38 94
3.0 1.01 3.03 145
4.0 1.38 5.52 205
5.0 1.72 8.60 290
6.0 2.07 12.48 3908
7.0 2.44 17.08 510
8.0 2.76 22.08 615
9.0 3.11 27.98 700

Table 2: Vaporization Spectrum for 4 pL of 0.1% DOP

#/cc
W, Watt T, oC Run 1 Run 2
2.09 130 18 34
3.83 170 3.9 x 104 2.6 x 103

ﬁ
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The -~erformance of the vaporizer/pyrolyzer was evaluated
using the eoxperimental system shown in Figure 17. Here the
vaporizer/pyrolyzer is mounted inside a small glass bottle and
filtered air at 24 or 12 Ipm is introduced into the bottle to flush out
the vaporized or pyrolyzed material. A TSI 3760 condensation
nucleus counter (CNC) is used to monitor the particics in the output
air stream. Since the CNC is capable of detecting particles as small as
0.01 um, the system proves to be extremely sensitive for detecting
the small amounts of vaporized or pyrolyzed material from the
vaporizer/pyrolyzer.

Eoil Cleaning: For the purpose of cleaning the foil, the
vaporizer/pyrolyzer was immersed in denatured alcohol for about
one hour and then dried in an oven. The assembly wus then
installed in the system. Next, 23 watts of power was applied so that
all material that would be vaporized or pyrolyzed below this power
level would be vaporiced or pyrolyzed. Finally, 4 uL of denatured
alcohol was added to the foil. The foil was then heated with 23 w of
power. No CNC count was observed, indicating that the foil was in fact
clean and that the alcohol used was nearly impurity free.

Yaporization Spectrum: To determine the response of the
vaporizer/pyrolyzer, a solution was prepared by adding 0.1% of DOP
(di-octyl phthalate) by volume to the denatured alcohol solvent. 4 uL
of this 0.1% DOP (di-octyl phthalate) solution was then added to the
foil. The electrical current was then slowly increased. When the CNC
began to indicate a count, the current increase was stopped and the
current was maintained at that level until the CNC count rose ‘o a

peak and then decayed to zero. The current was then slowly
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increased and the above steps repeated until all current levels at
which counts were observed were determined.

Figure 18 shows a sample spectrum obtained with 4 uL of 0.1%
DOP. It is interesting to note that two peaks were observed at power

levels of 2.09 W and 3.83 W, corresponding to temperature levels of

‘approximately 110 and 170 ©C. At these temperature levels,

materials in the DOP were vaporized and recondenses to form an
aerosol, which is then detected by the CNC. The detailed data are
given in Table 2.

Elash Vaporization: For the flash vaporization tests, 2, 4 or 8§ pL
of the sample solution was added to the vaporizer/pyrolyzer and 12
W of power was applied to the foil vaporizer/pyrolyzer suddenly.
Power was maintained at this level and aerosol particle counts were
recorded by the CNC. The results obtained for the 0.1% DOP are
shown in Table 3. It is interesting to note that the peak
concentration detected is approximately proportional to the solution
volume added to the foil, indicating a linear relationship between

vaporized material and peak aerosol concentration detected.

5.2 Results

DOS: Experiments were performed using both solutions of
known impurity content as well as solutions with unknown impurity
content. Figure 19 shows the spectrum obiained with 4 pL of 0.1%
DOS (di-octyl sebacate) in denatured alcohol. The spectrum is quite
similar ro that for DOP with the second peak occurring at a power

level somewhat lower than that for DOP (3.32 W for DOS vs. 3.83 W
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Table 3: Flash Vaporization for 0.1% DOP

#lce
Volume, pL Run 1 Run 2
2 2.2 x 104 2.4 x 104
4 6.2 x 104 6.2 x 104
8 1.2 x 103 8.9 x 104

Table 4: Vaporization Spectrum for 4 pL of 0.1% DOS

#lce
W, Watt T, oC Run 1 Run 2
2.04 3.1 x 104 45 x 107
3.32 2.1 x 104 3.6 x 102

Table 5: Flash Vaporization for 0.1% DOS

#/cc
Volume, pl Run 1 Run 2
2 ' 32 x 104 - 3.0 x 104
4 4.6 x 104 5.3 x 104

8 7.0 x 105 6.7 x 104




j

‘N M GEN uE U U U U U W E O GE W T - W = =.
3 .

51

for DOP). The data are given in Table 4. The results for the flash
vaporization tests are given in Table 5.

De-ionzed Water: To test the impurity in de-ionized water, two
grades of de-ionized water was used. One of the de-ionized water
tested was known to be of high-quality with electrical resistivity in
the vicinity of 18 MQ. The second de-ionized water was considerably
lower in quality, with much lower, but unknown electrical resistivity.
The results are shown in Figure 20. In both cases, one peak was
observed at a power level in the vicinity of 13 W. The result for the
flash vaporization test is shown in Table 6.

Tap Water: When tap water from the laboratory faucet was
used, interesting and complicated spectra was observed. Figure 21
shows the spectrum for the tap water. A total of six peaks were
observed corresponding to the various unknown impurities in the
tap water. The results are given in more detail in Table 7. The
corresponding data for the flash vaporization test are given in Table
8.

Finger Print: When the foil vaporizer/pyrolyzer surface is
lighted touched by the finger, there is sufficient contamination to
give interesting and easily observed peaks. The results are shown in
Figure 22 and in Tables 9 and 10.

The above experimental results are compared and summarized
in Table 11. The highest particle count is obtained with DOP where 4
uL of 0.1% of DOP produced the highest count of 6 x 104 particles/cc.
Lightly touching the foil surface with the tip of the finger produced
counts that are of the same order of magnitude. On the other hand,

when high purity DI water was used, the counts obtained was
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Table 6: Flash Vaporization of De-ionized Water

#/cc SR
Run High Purity Low Purity
1 0.054 3.732
2 0.193 0.508
3 0.610 0.447
4 0.054 3.808
5 0.060 1.040
Mean 0.194 1.905

Table 7: Vaporization Spectrum for Tap Water

ftlcc

W, Watt T, oC Run 1 Run 2
3.04 142 0.265 0.803
4.10 176 1.71 1.342
5.36 202 0.162 0.521
8.77 300 0.017 0

14.02 440 1.197 x 103 1.15x 103
19.59 580 1.070 x 104 2.26x 102
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l Table 8: Flash Vaporization of 4 puL of Tap Water
. _ Run #/cc
1 2.40 x 104
. 2 2.39 x 104
' 3 282 x 104
' Mean 2.54 x 104
' Table 9: Vaporization Spectrum for Finger Print
' #/cc
W, Watt T, oC Run 1 Run 2
' 2.67 2.85x102 5.07x102
' 3.02 6.77x102 9.29x104
3.90 7.24x104 3.38x104
| 5.28 4.82x10! 1.905
17.97 6.47x103 9.65x102
l 21.44 0.241 1.809
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Table 10: Flash Vaporization of Finger Print

Run #/cc

1 495 x 104
2 5.80 x 104
3 1.78 x 105
4 1.44 x 105
Mean 1.07 x 105

Table 11: Typical CNC Count (#/cc) for Various Materials

(4 uL sample Volume, except finger print)

Materal #/cc
0.1% DOP 6 x 104
0.1% DOS 5 x 104
Tap Water 2.5 x 104
DI Water (high purity) 0.194
DI Water (low purity) 1.90
Finger Print 1 x 104
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approximately 5 orders of magnitude lower, and in the vicinity of 1
0.19 particles/cc. %

5.3 Yaporizer/Pyrolyzer for the Virtyal Impagtor Concentrator ]

On the basis of the experimental work described above, a 7
vaporizer/pyrolyzer was designed and constructed for the virtual
impactor concentrator described earlier. The conceptual design of the
vaporizer/pyrolyzer is shown in Figure 23 and a more detailed
design is shown in Figure 24.

Specifically, the vaporizer/pyrolyzer consists of a needle-in-a-
tube electrostatic precipitator to precipitator the particles in the
concentrator aerosol stream from the virtual impactor concentrator.
The particle collecting surface is in the form of a tight cylindrical
helix wound from nichrome heating wires. The helical coil of
nichrome wire provide the collecting surface onto which particles can
precipitate. After sufficiently amounts of material has been collected,
an electrical current can then be passed through the nichrome wire
to cause the material to be vaporized or pyrolyzed. The vaporized or
pyrolyzed material can then be introduced into a mass spectrometer
for physical or chemical analysis. This particular design of the
vaporizer/pyrolyzer has the advantage that the electrostatic
precipitator designed has high collecting efficiency and the small
mass of the nichrome wire results in short thermal time constant and
rapid heating of the collected sample. In addition, since particles are

collected on the nichrome wire by electrostatic charging and

precipitation, particles would be attracted to the collecting surface

and bounce and re-entrainment of particles are unlikely to occur.
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This particular design is specifically recommended for further
research and development effort.
6.  Summary of Important Results

The result of this study indicates that sample acquisition for
chemical or biological detection can best be accomplished by the use
of a multiple nozzle virtual impactor concentrator to concentrate the
aerosol stream and an electrostatic precipitator to deposit the
particles onto the surface of a nichrome wire to volatilize or pyrolyze
the collected material for subsequent physical or chemical
identification. The use of a multiple nozzle virtual impactor
concentrator will lead to significant savings in pressure drop and
power consumption for the sample flow pump. The use of an
electrostatic precipitator will provide high collection efficiency and
avoid the problem of particle bounce. A sample acquistion system
incorporating the above mentioned elements has been designed,
constructed and tested. The performance characteristics of the
system have been found to be satisfactory.
7 Participati Scientific P l
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Figure 15. Voltage-current curves for foil vaporizer/pyrolyzer
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Figure 16. Foil temperature as a function of input power




Figure 18. Vaporization spectrum for 4 uL of 0.1% DOP solution
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Figure 19. Vaporization spectrum for 4 pL of 0.1% DOS solution
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Figure 20. Vaporization spectrum for de-ionized water of high and
low purity
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Figure 23. Conceptual design of electrostatic precipitator for particle
collection
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Appendix A

Performance of the Single Nozzle Virtual Impactor Concentrator
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] )
. DP, um 2
Slip_Correction 1.11E+00
Relaxation Time 1.34E-05
l St40.5 6.50E-01 4
| Stokes Number 4.23E-01
. Nozzle Coefficient 8.00E-01
Flow Rate Nozzle Dia. Jet Velocity Pressure Drop_ {Air Power
. Q, lpm D, cm U, cm/s inch H20 Watt
1 1.11E-01 1.74E+03 1.14E+00 4.71E-03
2 1.39E-01 2.19E+03 1.80E+00 1.50E-02
l 3 1.59E-01 2.50E+03 2.36E+00 2.94E-02
4 1.75E-01 2.76E+03 2.86E+00 4.75E-02
5 1.89E-01 2.97E+03 3.32E+00 6.89E-02
' 6 2.01E-01 3.16E+03 3.75E+00 9.34E-02
7 2.11E-01 3.32E+03 4.16E+00 1.21E-01
8 2.21E-01 3.47E+03 4.54E+00 1.51E-01
9 2.30E-01 3.61E+03 4.91E+00 1.84E-01
' 10 2.38E-01 3.74E+03 5.27E+00 2.19E-01
20 3.00E-01 4.71E+03 8.37E+00 6.94E-01
30 3.43E-01 5.40E+03 1.10E+01 1.37E+00
l 40 3.78E-01 5.94E+03 1.33E+01 2.20E+00
50 4.07E-01 6.40E+03 1.54E+01 3.20E+00
60 4.33E-01 6.80E+03 1.74E+01 4.33E+00
l 70 4.56E-01 7.16E+03 1.93E+01 5.60E+00
80 4.76E-01 7.48E+03 2.11E+01 7.00E+00
90 4.95E-01 7.78E+03 2.28E+01 8.52E+00
' 100 5 13E-01 8.06E+03 2.45E+01 1.02E+01
200 6.46E-01 1.02E+04 3.88E+01 3.22E+01
300 7.40E-01 1,16E+04 5.09E+01 6.34E+01
l 400 8.14E-01 1.28E+04 8.17E+01 1.02E+02
500 8.77E-01 1.38E+04 7.16E+01 1.48E+02
600 9.32E-01 1.46E+04 8.08E+01 2.01E+02
709 9.81E-01 1.54E+04 8.96E+01 2.60E+02
l 800 1.03E+00 1.861E+04 9.79E+01 3.25E+02
900 1.07E+00 1.68E+04 1.06E+02 3.95E+02
' 1,000 1.11E+00 1.74E+04 1.14E+02 4.71E+02
| =
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Appoendix B

Performance of the Multiple Nozzie Virtual Impactor Concentrator
with Sampling Flow Rates of 10, 100, 1000 and 22 Liters per Minute
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DP, um 2
Slip Correction 1.11E+00
Relaxation Time 1.34E-05
Sth0.5 6.50E-01
Stokes Number 4.23E-01
Nozzle Coefficient| 8.00E-01
Q, Ipm 10
Nozzle # Flow Rate/ |Nozzle Dia. |Jet Velocity |Press. Drop |Air Power
nozzle, Ipm |D, cm U, cm/s inch H20 Watt

i| 1.00E+01| 2.38E-01] 3.74E+03] 5.27E+00{ 2.19E-01

2| 5.00E+00{ 1.89E-01| 2.97E+03| 3.32E+00{ 1.38E-01

3| 3.33E+00] 1.65E-01] 2.59E+03| 2.53E+00/ 1.05E-01

4, 2.50E+00[ 1.50E-01] 2.36E+03| 2.09E+00/ 8.68E-02

5| 2.00E+00, 1.39E-01] 2.19E+03| 1.80E+00| 7.48E-02

6| 1.67E+00{ 1.31E-01] 2.06E+03] 1.60E+00/ 6.62E-02

7] 1.43E+00{ 1.24E-01f 1.96E+03] 1.44E+00| 5.98E-02

8 1.25E+00 1.19E-01 1.87E+03| 1.32E+00| 5.47E-02

9/ 1.11E+00] 1.14E-01] 1.80E+03| 1.22E+00| 5.06E-02

10/ 1.00E+00, 1.11E-01] 1.74E+03]| 1.14E+00] 4.71E-02

20| 5.00E-01| 8.77E-02| 1.38E+03| 7.16E-01| 2.97E-02

30, 3.33E-01] 7.66E-02| 1.20E+03| 5.46E-01| 2.27E-02

40 2.50E-01] 6.96E-02| 1.09E+03| 4.51E-01] 1.87E-02

50, 2.00E-01] 6.46E-02 1.02E+03] 3.88E-01] 1.61E-02

60/ 1.67E-01| 6.08E-02| 9.56E+02| 3.44E-01] 1.43E-02

70, 1.43E-01] 5.78E-02 9.08E+02] 3.10E-01] 1.29E-02

80 1.25E-01| 5.53E-02| 8.68E+02 2.84E-01 1.18E-02

90, 1.11E-01] 5.31E-02] 8.35E+02| 2.63E-01 1.09E-02

100 1.00E-01| 5.13E-02| 8.06E+02| 2.45E-01 1.02E-02

End
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DP, um 2
ﬂg Correction 1.11E+00
| Relaxation Time 1.34E-05
S140.5 6.50E-01
Stokes Number 4.23E-01
Nozzle Coefficient| 8.00E-01
Q, Ipm 100

Nozzle # Fiow Rate/ |Nozzle Dia. |Jet Vskr  |vress. Drop |Air Power
: nozzle, lpm [D,cm cm/s _ linch H20 - |watt- -

1| 1.00E+02| 5.13E-01] 8.06E+03] 2.45E+01] 1.02E+01

2| 5.00E+01] 4.07E-01] 6.40E+03] 1.54E+01] 6.40E+00

3] 3.33E+01] 3.56E-01] 5.59E+03] 1.18E+01] 4.88E+00

4] 2.50E+01] 3.23E-01] 5.08E+03| 9.71E+00] 4.03E+00

5| 2.00E+01| 3.00E-01] 4.71E+03| 8.37E+00] 3.47E+00

6] 1.67E+01] 2.82E-01} 4.44E+03] 7.41E+00[ 3.07E+00

7 1.43E+01| 2.68E-01] 4.21E+03| 6.69E+00| 2.77E+00

8] 1.25E+01| 2.57E-01] 4.03E+03| 6.12E+10] 2.54E+00

9] 1.11E+01] 2.47E-01] 3.88E+03] 5.66E+00] 2.35E+00

10, 1.00E+01| 2.38E-01} 3.74E+03{ 5.27E+00] 2.19E+00

20| 5.00E+00[ 1.89E-01] 2.97E+03[ 3.32E+00] 1.38E+00

30/ 3.33E+00( 1.65E-01] 2.59E+03| 2.53E+00| 1.05E+00

40| 2.50E+00! 1.50E-01] 2.36E+03[ 2.09E+00] 8.68E-01

§0| 2.00E+00{ 1.39E-01] 2.19E+03| 1.80E+00] 7.48E-01

60 1.67E+00] 1.31E-01] 2.06E+03] 1.60E+00] 6.62E-01

70 1.43E+00 1.24E-01] 1.96E+03] 1.44E+00] 5.98E-01

80 1.25E+00] 1.19E-01] 1.87E+03] 1.32E+00] 5.47E-01

90 1.11E+00] 1.14E-01] 1.80E+03] 1.22E+00] 5.06E.01

100, 1.00E+00! 1.11E-01] 1.74E+03] 1.14E+00 4.71E-01

End
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|DP, um 2
| Slip_Correction 1.11E+00
Relaxation Time 1.34E-.05
S120.5 6.50E-01
Stokes Number 4.23E-01
Nozzle Coefficient| 8.00E-01
Q, lpm 1000

Nozzle # Flow Rate/ 1No2zle Dia. -!Jet Velocity |Press. Drop |Air Power
nozzie, ipm 1D, cm U, cm/s inch H20 Watt

1] 1.00E+03] 1.11E+00] 1.74E+04| 1.14E+02] 4.71E+02

2] 5.00E+02] 8.77E-01] 1.38E+04] 7.16E+01] 2.97E+02

3] 3.33E+02] 7.66E-01] 1.20E+04] 5.46E+01] 2.27E+02

4] ¢.50E+02| 6.96E-01] 1.09E+04] 4.51E+01] 1.87E+02

5] 2.00E+02| 6.46E-01] 1.02E+04[ 3.88E+01] 1.61E+02

6] 1.67E+02| 6.08E-01| 9.56E+03| 3.44E+01| 1.43E+02

7] 1.43E+02| 5.78E-01| 9.08E+03] 3.10E+01] 1.29E+02

8] 1.25E+02] 5.53E-01] 8.68E+03] 2.84E+01| 1.18E+02

9| 1.11E+02] 5.31E-01] 8.35E+03| 2.63E+01] 1.09E+02

10| 1.00E+02] S5.13E-01] 8.06E+03[ 2.45E+01] 1.02E+02

20| 5.00E+01] 4.07E-01] 6.40E+03 1.54E+01| 6.40E+01

30| 3.33E+01] 3.56E-01] 5.59E+03] 1.18E+01] 4.88E+01

40| 2.50E+01] 3.23E-01] 5.08E+03| 9.71E+00| 4.03E+01

50/ 2.00E+01] 3.00E-01] 4.71E+03] 8.37E+00] 3.47E+01

60| 1.67E+01| 2.82E-01] 4.44E+03]| 7.41E+00| 3.07E+01

70| 1.43E+01] 2.68E-01] 4.21E+03] 6.69E+00| 2.77E+01

80 1.25E+01] 2.57E-01| 4.03E+03| 6.12E+00| 2.54E+01|

90| 1.11E+01| 2.47E-01] 3.88E+03]| 5.66E+00| 2.35E+01

100/ 1.00E+01] 2.38E-01] 3.74E+03] 5.27E+00{ 2.19E+01

_End|
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DP, um 2
Slip Correction 1.11E+00
Relaxation Time 1.34E-05
Str0.5 6.50E-01
Stokes Number 4.23E-01
Nozzle Coefficient] 8.00E-01
Q, lom 22
Nozzle # Flow Rate/ [Noz2le Dia. iJet Velocity |Press. Drop [Air Power
nozzle, lom |D, cm U, cm/s inch H20  |Watt

1| 2.20E+01| 3.10E-01[ 4.87E+03| 8.92E+00[ 8.14E-0t

2| 1.10E+01] 2.46E-01] 3.86E+02] 5.62E+00] 5.13E-01

3| 7.33E+00] 2.15E-01] 3.37E+03] 4.29E+00| 3.91E.01

4] 5.50E+00] 1.95E-01] 3.07E+03] 3.54E+00, 3.23E-01

5| 4.40E+00] 1.81E-01| 2.85E+03] 3.05E+00/ 2.78E-01]

6/ 3.67E+00] 1.70€-01| 2.68E+03] 2.70E+Q0; 2.47E-01

7] 3.14E+00 1.62E-01| 2.54E+03! 2.44E+00[ 2.22E-01

8] 2.75E+00| 1.55E-01] 2.43E+03] 2.23E+00{ 2.04E-01

9] 2.44E+00] 1.49E-01] 2.34E+03] 2.06E+00] 1.88E-01

10/ 2.20E+00, 1.44E-01| 2.26E+03] 1.92E+00, 1.75E-01

11| 2.00E+00[ 1.39E-01] 2.19E+03[ 1.80E+00| 1.65E.01

12| 1.83E+00 1.35E-01] 2.13E+03| 1.70E+00[ 1.55E-01]

13| 1.69E+00, 1.32E-01f 2.07E+03| 1.61E+00| 1.47E-01

14/ 1.57E+00] 1.29E-01] 2.02E+03] 1.54E+00{ 1.40E-01

15 1.47E+00] 1.26E-01] 1.97E+03[ 1.47E+00! 1.34E-01

16/ 1.38E+00] 1.23E-01] 1.93E+03[ 1.40E+00] 1.28E-01]

17| 1.29E+00{ 1.20E-01] 1.89E+03[ 1.35E+00] 1. 1.23E-01]

18 1.22E+00, 1.18E-01| 1.86E+03] 1.30E+00/ 1.19E-01

19| 1.16E+00] 1.16E-01] 1.82E+03] 1.25E+00] 1.14E-01

20/ 1.10E+00[ 1.14E-01] 1.79E+03] 1.21E+00{ 1.10E-01

21| 1.05E+00[ 1.12E-01] 1.76E+03] 1. 1.17E+00] 1.07E-01

22 1.00E+CO| 1.11E-01] 1.74E+03] 1.14E+00| 1.04E-01

23] 9.57E-01] 1.09E-01] 1.71E+03] 1.10E+00 1.01E-01

24| 9.17E-01] 1.67E-01] 1.69E+03] 1.07E+00/ 9.78E-02

25| 8.80E-01] 1.06E-01] 1.66E+03] 1.04E+00] 9.52E-02

26| 8.46E-01| 1.05E-01] 1.64E+03] 1.02E+00| 9.28E-02

271 8.15E-01] 1.03E-01] 1.62E+03{ 9.91E-01] 9.04E.02

28 7.86E-01] 1.02€E-01] 1.60E+03] 9.67E-01| 8.83E-02

29| 7.59€-01} 1.01E-O1[ 1.58E+03| 9.45E-01f 8.62E-02

30! 7.33E-01] 9.97E-02] 1.57E+03| 9.24E-01] 8.43E-02

40| 5.50E-01] 9.06E-02 1.42E+03] 7.63E-01] 6.96E-02

50| 4.40E-01 8.41E-02] 1.32E+03] 6.57E-01] 6.00E-02

60| 3.67E-01] 7.91E-02] 1.24E+03/ 5.82E-01] 5.31E-02

70| 3.14E-01] 7.52E-02] 1.18E+03| 5.25E-01] 4.79E-02

80| 2.75E-01} 7.19E-02] 1.13E+03] 4.80E-Q1] 4.38E-02

90 2L-4i§ -01] 6.91E-02( 1.09E+03] 4.44E-01] 4.05E.02

100 2.20E-01] 6.67E-02] 1.05E+03] 4.14E-01| 3.78E-02

End|
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Appendix C

Design Drawings for the Virtual Impactor Concentrator
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